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Abstract.  Let   be a commutative ring with identity. The  purpose  of this  paper  is 

to introduce  and  study a new class of modules  over  called  top-like  modules.   

Every top-like module possesses a primary-like spectrum with the Zariski-like 

topology.  This class contains the family of multiplication -modules properly.  We 

show that a finitely generated -module  is a top-like -module iff    is a top -

module iff    is a multiplication -module. 
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1. Introduction   

Throughout this  paper  all  rings  are  commutative with  identity and  

modules  are  unitary. Let   be an -module and   a submodule. The 

colon ideal of  into    is the ideal  of . A proper 

subbmodule  of  is called a prime submodule or -prime submodule of  if 

for , whenever  for  and  , we have or  

[13]. The intersection of all prime submodules of  containing , denoted by 

, is called prime  radical  (or simply,  radical)  of  [15]. The radical of 

an ideal I will be denoted by . The prime spectrum of , denoted  by  

is the  set  of all prime submodules  of . If   , then  is called 

primeless  [14] .  For  ,  we denote as the set of all -

prime submodules  of  [13]. Put   } and  

 is a submodule of .  Then there exists a topology  , called 

quasi Zariski topology on  , having   as the set of closed subsets  

of  if and only if  is closed under  the finite union.  In this case, 

  is called a top -module [14]. We say that a submodule    of satisfies  the  

primeful  property if for every  prime  ideal   containing  there exists 

 such that . Also  is called primeful if  or the zero 

submodule of   satisfying the primeful property [9]. If  is a submodule, then  

. A proper submodule of  is called a primary-like 

submodule whenever  for  and  , we have or 
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 If  is a primary-like submodule of  satisfying the primeful 

property, then  is a primary ideal of   [8, Lemma 2.1]. In this case,  is 

called a p-primary-like submodule of  , where  . The primary-like 

spectrum of , denoted by , is the set of all primary-like submodules of 

 satisfying the primeful property [8]. Also we set  

 

Recently,  modules whose spectrums  having various types of Zariski 

topologies have been received a good deal of attention (see for example  [1, 3, 

11, 14, 16]).  Hereafter,  we study  the  algebraic properties  of a new class of 

modules  which  are  equipped  with  a new Zariski  topology, called Zariski-like  

topology,  defined as follows.  Let    be a submodule of an -module . We 

set  Some elementary facts about  have 

been in the following lemma.  

Lemma 1.  Let  be an -module. Let ,  and  be submodules of 

.  Then the following statements hold. 

(1)   
(2)  ). 

(3)    

(4)   

(5)   

Put   is a submodule of  From  (1), (2), (3) and (4) in 

Lemma 1, we can easily that there exists a topology,  say, on 

. A module   is called a top-like module if induces  the   

topology  .  In Section  2, we study  a class of -modules  whose  primary-

like spectrum  is empty, called modules with empty  primary-like  spectrum  or 

for short WEPS modules.  We show that primeless -modules are WEPS  and 

the converse is true  if  is a zero-dimensional ring (Lemma  2).  In particular, 

every torsion divisible -module  is WEPS, however WEPS  modules are 

neither torsion nor divisible in general (Example  1 ).  In Section 3, for a 

module  over an Artinian  ring  we show that: 

 is locally cyclic  is top-like is a top-like -module. 

Moreover,  if   is finitely generated,  then  these  conditions  are equivalent  

(Theorem  1 ).  An -module    is called a multiplication module if for 

every submodule    of  , there  exits an ideal  of  such that . In 

this case, we can take  [5]. An -module    is called weak 

multiplication if each prime submodule    of  has the form  for some  

deal  of  [4]. Since the zero submodule of -module  of rational numbers 

is the only prime submodule of , then   is a weak multiplication module,  

which is not  multiplication.  In Theorem 4 of Section 4, it is shown that every 
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multiplication module is top-like.  In particular, if  is a finitely generated 

module, then is top-like  is top  is multiplication. 

Also it  is proved  that if   is a weak multiplication module  over a PID  

such  that for every , ,  then  is top-like 

(Theorem 5).  By Example 5, we see that the converse dose not 

necessarily true.  

 

2. Modules with empty primary-like spectrum 

 

Hereafter we denote  by  . Recall that an -module  is said to 

be with empty primary-like  spectrum  or for short  WEPS  if . Note that 

we are not excluding the trivial case where  is empty; WEPS modules are top-

like modules. Clearly, zero module is WEPS and primeless. As nontrivial 

example the -module   is WEPS  (see [14, P.  81] and Lemma 2.1). Also 

for the  -module of rational numbers , i.e. is not primeless, 

however  is WEPS  since the submodule  0 of  dose not satisfy the primeful 

property. 

Lemma 2.  Let   be an -module.  Consider the f ollowing statements. 

(1)   for every ; 
(2)    is primeless; 

(3)   is WEPS; 

(4)   for every maximal ideal  of . 

Then . Moreover, if  is a zero-dimensional ring, then 

. 

Proof.   Suppose on the contrary that  is a prime submodule of . 

Thus   by (1) and so , a contradiction.  

Suppose  Since  satisfies the primful property, there exists a prime 

submodule  o f   containing  which is a contradiction.     

 Assume the contrary,  for some maximal ideal  o f . 

Thus . Hence  and so by [14, Corollary 1.2],  is 

a prime submodule of  .  It is easily seen that  , i.e.   is not WEPS. 

 is clear. 

Lemma 3.  If   is a WEPS -module, then   is not finitely generated and 

multiplication. 
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Proof. If  is either finitely generated or multiplication,  has a maximal 

submodule  It is evident that  satisfies the primeful property and  

Thus  is not WEPS. 

In [14, Lemma 1.3 (1)], it has been shown that any torsion divisible 

module over a domain R is primeless and so by Lemma 2.1 is WEPS.  In 

general, a WEPS module is not torsion.  It is clear that the -module  is 

WEPS which is also torsion-free.  In the following a WEPS module is given 

which is not divisible. 

Example 1.  Let , the domain  of polynomials  over a field  .  

Let . Then  the -module  is an  injective  hull of  

since   is a field ([18, p. 50 Example]).  Thus , a 

divisible -module ([18, Remark  before Proposition 2.22 and Proposition 

2.6]). On the other hand since  is an essential extension of , it is easily 

seen that  is a torsion -module. Thus by [14, Lemma 1.3 (1)] 

is a primeless -module and so by Lemma 1 it is a WEPS -module. 

However,  is not a divisible -module because for  and 

 there is no  such that . 

Equivalently, there is no  such that . 

In the following we give conditions under which a WEPS module is 

divisible. 

Proposition 1.  Let  be a one-dimensional Noetherian domain and   be a 

module over .  If   is a WEPS module, then   is divisible. 

Proof. Suppose that  is a WEPS -module.  By Lemma 2,  for every 

maximal ideal  of . Assume .  Since  is one-dimensional domain, 

the  ring  is zero- dimensional  Noetherian and so is Artinian. So 

,…,  for some positive integer   and maximal ideals   

of . Hence  and so   = 

rM .  Thus   is divisible. 

Let  be a submodule of . In [8, Corollary 3.5] we showed that every 

primary-like submodule of  satisfying the primeful property has the form 

, where  and . Thus any homomorphic  image of a WEPS  

module is WEPS.  In particular,  if    is a WEPS  module, then for 

every  is WEPS.  The converse holds, if R is a zero-dimensinal ring (see 

[14, Proposition 1 .7] and Lemma 2.1).  Also if for every  is a primeless 

module, then   is a WEPS module (see [14, Proposition 1.7] and 

Lemma 2.1). In the following we investigate the similar assertion for direct product 

of modules. 
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Lemma 4.  Let  be an -module. If  is a primary-like submodule of  and  a 

submodule of  such that , then  or 

 is a primary-like submodule of .  

Proof.  Let  and for ,  such that  It  

implies that  and  . Since  is a primary-like submodule  of , 

we have , and so by our assumption N). Thus  

 is a primary-like submodule of .  

Proposition 2. Let  be -modules and .  Let 

 for every primary-like submodule  of   and every 

submodule   of  .  Then  is a WEPS  module if and only if   is WEPS  

for every . 

Proof.  Suppose  is WEPS  and   is not WEPS.  Assume . Then  

 for each , by Lemma 4. Hence   for each . Thus 

, a contradiction.  The converse follows from the fact that every 

homomorphic image of a WEPS module is WEPS. 

Proposition 3.  Let   be an -module such that for every primary-like 

submodule  of  and every submodule   of  we have 

. Then if   is an exact sequence of -

modules such that   '   and ''   are both WEPS, then   is WEPS. 

Proof. Suppose that . Then , by Lemma 4  and so 

.  Hence ) is a primary-like  submodule  of  satisfying  

the primeful property by [8, Corollary 3.5], which is a contradiction since 

and is WEPS. Thus   is WEPS.  

For the converse of Proposition 2.3, the homomorphic image of a WEPS module is 

WEPS. But the submodules of a WEPS module is not necessarily WEPS,  even 

if  for every primary-like  submodule  of  

and every submodule   of .  The  -module   is WWPS, while the -module 

 is not WEPS.  In fact .  Also  since 

, then for every primary-like submodule   of  and every submodule  of  

either or 

. 

 

3. Top-like modules 

 

A submodule  of an -module  is called semiprime. If   is an intersection 

of prime submodules.  We say that a submodule  is phenomenal if 

whenever  and  are semiprime submodules of   with , 

then   or .  

Theorem 1.  Let   be an -module.  Consider the following statements. 

(1) Every  is phenomenal;   
(2)  for any submodules  and  of ; 
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(3)  is a top-like module. 

Then(1)⟹(2)⟹(3)  Furthermore, if every  prime  submodule  of   

satisfies  the  primeful property,  then (3)⟹(1). 

Proof.   Let  and  be semiprime submodules of . Clearly 

 Let .  Then   and hence 

or . Thus   

 Assume  and  be submodules of  .  If  is empty, then 

. Suppose that and are both non-empty. 

Then  , by 

Lemma 1. 

 Let   and let  and  be semiprime submodules of  such 

that . By hypothesis,  there exists a submodule   of  such 

that Since  , for some collection  of prime  

submodules  ,  for each  ,  and so .  

Thus   .  Similarly  .   Thus  .   Hence we have 

.  It follows that 

.  Now from . we have or , 

i.e.  or . 

Corollary 1.  Let  be an -module.   Then the conditions  (1),  (2) and  (3) 

in Theorem  3.1 are  equivalent in each of the following cases. 

(1)  is a finitely generated module. 

(2)  is a primeful  module and every prime submodule of    has  the  form    

for  some  prime  ideal  

Proof. (1) follows from [9, Theorem  2.2] and Theorem  1. 

(2) follows from [9, Proposition 4.5] and Theorem 3.1.                                                                      

Corollary 2.  Any homomorphic image of a top-like -module is top-like.  In 

particular every    cyclic module is top-like. 

Proof.  Let    be a submodule of a top-like -module  .  Then  the  primary-

like   submodules of  which  satisfy  the  primeful  property are  precisely  

the  submodules  ,  where  is a primary-like submodule of  satisfying  

the  primeful  property with   [8, Corollary 3.5].   Similarly  every  prime  

(semiprime) submodule  of  has  the  form  ,  where   is a  prime  

(semiprime)   submodule  of   containing     [14, Lemma  1.1]. Hence we 

have  . Thus by Theorem 1  is a top-like -

module.   In particular if    is a homomorphic image of a top-like module   

under a surjective homomorphism , then  and so by the above 

argument   is top-like. 
Corollary 3.   Let    be rings and    be an -module such that the -
module    is a top-like module.  Then the -module    is a top-like module. 

Proof.  Let  be a primary-like -submodule of   satisfying the primeful 

property. It is clear that  is a primary-like -submodule of   satisfying the 
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primeful property.  Let   and    be semiprime -submodule  of  such 

that  H e n c e   o r    since   and  

 are also semiprime  -submodule  of  Thus  is phenomenal  and  so by 

Theorem 1,   is a top-like -module.  

Lemma 5.  Let  be a field. Then there exists a phenomenal submodule 

 if and only if  is a one-dimensional vector space over . 

Proof.  Suppose  is one-dimensional.  Since every proper submodule of  is   

a prime submodule,  is the only prime submodule  of  . So it is easily 

seen that   and  is a phenomenal submodule.   Conversely, suppose on 

the contrary that   is not one-dimensional and  is  phenomenal. Since   

 is a proper  submodule  and  so is a prime  submodule,   and  

.   So .   Assume .   Thus there exist non-

zero elements  such that . Since  is phenomenal,  

. Assume that   and   .  So   and   are  

subspaces of   with   but   and 

, a contradiction. 

Theorem 2.   Let   be a maximal ideal of   and    a top-like -module. 

Then  is a cyclic -module. 

Proof.  Suppose that .  In this case  is a non-zero vector 

space over the field  and every proper subspace is primary-like and satisfies 

the primeful property.  Since   is a top-like module,   is a top-like  

-module by Corollary 2.  Hence  contains a phenomenal 

submodule by Theorem 2.  Now Lemma 5 shows that  is one-

dimensional  over , i.e.  is a cyclic -module. 
In Corollary 2, we showed that top-like  modules  are  closed under  

quotient.  Now we use from Theorem 2 to show that a submodule  of a top-
like module is not necessarily top-like.  

Example 2.   Let , where  b e  the cyclic group of order . 

Then  by [14, Example 2.6].Clearly if  is a  

submodule of  such that  o r  ,  then  dose not 

satisfy the primeful property. Also if  then  and so   

dose not satisfy the primeful property.  Consider the only remaining case 

. In this  case, if , then  and so   . 
If , then    does not  satisfy  the primeful  property.   The  finial 

case  is  In  this case if   is a primary-like  submodule 

satisfying the primeful  property,  then  for some , since 

 is a primary  ideal of .  Assume  and  .  Now 

we have , follows  which is a contradiction. Therefore  

 .  Hence   is a top-like  -module by Theorem 3.1.  Put  

Hence by Theorem  2  is not top-like, since  , a non-cyclic -

module. 
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Corollary 4.  Let   be a free -module.  Then the following statements are 

equivalent. 
 
(1)    is top-like; 

(2)    is top; 

(3)    is cyclic. 

Proof.   Suppose that   is top-like.  Hence  is a cyclic -

module by Theorem 3.2. Thus   is cyclic. 

 follows from Corollary 2. 

 holds by [14, Corollary 2.5]. 

Corollary 5.   Let    be a semi-local ring and   be an  -module.   Then the 

following statements are equivalent. 

(1)    is top-like; 

(2)    is top; 

(3)    is cyclic. 

Proof.   Assume that  is a  top-like module. Since  i s  semi-

local,  is containing precisely finite distinct maximal ideals.  Suppose  

denote the distinct maximal ideals of , where  is a positive integer.  By 

Theorem 3.2  is cyclic for each .  Thus    is cyclic. 

 follows  from Corollary 2. 

 holds  by [14, Corollary 2.5]. 

Let    be a submodule of an  -module    and  .   The 

saturation  of    with respect to   is the contraction of    in   

[10].  In  [14, P.  92] it  has  been  shown  that for every submodule    of   

and  for any  -submodule   of  ,   and 

. 

Lemma 6 .   Let  be a maximal ideal of a ring  .  If  is an  -primary-

like submodule of   satisfying  the primeful property,  then  is an -

prime  submodule of . 

Proof.  Since  satisfies the primeful property, we have 

 Suppose  with   and  .  Then  

, for some  and   and therefore . 

Proposition 4 .   Let    be an Artinian ring and    be a top-like - 

module.   Then    is a top-like -module for every prime ideal  of . 

Proof.  Let  be a primary-like submodule of the -module  satisfying the 

primeful property. Then it is easily verified that  is a primary-like 

submodule of  satisfying the primeful property. Now if   and  are 

semiprime  submodules  of   with , then   and  
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are semiprime  submodules  of   with   

Since   is an  Artinian ring,   is a prime  submodule of   by Lemma 

3.2.  So   is a prime submodule of .   Since   is a top-like 

module, by [6, Theorem 2.16]   is a top module. Hence by [14, Lemma 2.1],  

  or  It follows that  

  or . Thus  is 

phenomenal and so   is a top-like -module by Theorem 1. 

Proposition 5.  Let   be a top-like -module and every prime  

submodule of  satisfies  the  primeful  property  for  every  prime  

ideal   of .   Then    or  for every 

. 

Proof.  Suppose that  So . It follows that 

 . By Theorem 3.2,  is cyclic so that 

 or . Now, let . 

Then .  I f  

, then                                             

An -module    is called locally cyclic if   is a cyclic module over 

the local ring    for every prime ideal  of . 

Theorem 3.   Let    be an Artinian ring and    be an  -module.    

Consider the following statements. 

 (1)    is cyclic. 

 (2)    is locally cyclic. 

 (3)    is top-like. 

 (4)    is a top-like -module for every prime  ideal  of  

 (5)    for every . 

 (6)   is a cyclic module for every prime  ideal  of  

 (7)   is a cyclic module for every prime  ideal  of  

Then  Furthermore, if   is 

finitely generated,  then  

Proof.   is clear. 

 Suppose  and   Let    and  be 

semiprime submodules of  with  Then 

 Note that if   by Lemma 3.2   

a contradiction. Thus  But   gives 

 S ince    is cyclic,    Hence  is a 

unique maximal submodule of the - module  . Thus  or 

 Suppose that  Then 
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 It follows that   is phenomenal and 

so  top-like module by Theorem 1. 

 follows from Proposition 5 .  

 Suppose that  . So  .  It follows that 

. By [ 6 , Theorem 2.16] and Theorem 2 ,   is cyclic 

so that  or .  Now, if  , 

then by Lemma 6   which is a contradiction. Thus we have 

  

 Suppose . So  so 

that . It follows that   is a prime submodule of   satisfying 

the primeful property. Assume that  ) .  It implies that 

  and so  Thus 

 i. e.  is cyclic.  

 Assume that   Hence similar to the proof   

 is a -prime submodule of   and so  Thus  
 is cyclic. 

 follows from [14, Theorem 3.5] and [7, Corollary 2.9]. 

                 

4.    Multiplication modules and weak multiplication modules 

 

   In this section we investigate the relationship between some certain classes 

of modules,  spe cially multiplication modules, and top-like modules. 

Hereafter we denote  and  for every  by  and , 

respectively. The map  given by  

is called the natural map of  .  is said to be -injective if either   or 

  and the natural map of  is injective. 

Theorem 4.   Let    be a finitely generated -module.  Then the following 

statements are equivalent. 

(1)    is multiplication; 

(2)    is top-like; 

(3)    is top; 

(4)   for every ); 
(5)  If  for , then ; 

(6)    is -injective; 

(7)  For every submodule   of   there exists an ideal  of  such that  

; 

(8)    is a top -module for every prime  ideal  of ; 
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(9)   is cyclic for every maximal ideal  of . 

Proof.   Suppose   and  are two submodule of  . Therefore   

and   some ideals  and  of    It is easy to verify that 

 Let  

. Then . So .  Hence  

 or  

 and so  . 

   follows from the fact that  is a topological subspace  of 

. 

 is by  [14, Theorem 3.5].                                                                                 

 follows from [ 1 1 ,  Proposition 3.2] .                                                                                  

Corollary 6 .  If   is a finitely generated top-like module over an 

Artinian ring ,  then   is cyclic. 

The following example shows that every top-like module is not multiplication 

in general. 

Example 3.  Let , where   is the cyclic group of order . 

Then  .  So   is a top-like -module by Theorem 1.  But   is not 

a multiplication -module by [14, Example 3.7]. 

An  -module    is called  distributive if the  lattice  of its  submodules  

is distributive,  i.e.   or equivalently 

 for all submodules  and  of  [5]. Some 

authors call such modules arithmetical modules.  An -module    is called a 

Bezout module if every finitely generated submodule is cyclic [19]. It is easy to 

see that every Bezout  -module  is distributive [19, P. 307, Corollary  2]. 

Proposition 6.  Let  be an Artinian ring and    be an  -module.   

Consider the following statements. 

(1)    is distributive. 

(2)    is Bezout. 

(3)    is top-like. 

Then  (1) ⇔ (2) and  (2) ⇒ (3).  Furthermore, if  is a local ring  and    is 

finitely generated, then (3) ⇒ (2). 

Proof.  (1) ⇔ (2) follows from [5, Propositions 4, 7]. 

 Assume . Let  and   

Then there exists   such that . Thus there exist  

such that   and . Therefore .  Now by Lemma 

3.2 . In particular,   whence . This 

implies that    is a top-like module.   

 Since  is finitely generated, by Theorem 4.1  is a 

multiplication  module.  Hence  is cyclic by [7, Corollary 2.9]. Since  is an 
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Artinian local ring, every ideal of   is principal and so every  submodule of  is 

cyclic. 

Recall that an -module    is called weak multiplication if each prime 

submodule    of has the form   for some ideal  of  [4]. In this case, 

we can t ake   

Th eorem 5.   Let  be a PID and    a weak multiplication -module.   If for 

every  then  is a top-like  -module. 

Proof. Suppose  and  be non-zero semiprime submodules of such that 

.  We show that  is phenomenal.  So by Theorem 1   is 

top-like.  Since  is PID,  is prime by Lemma 6 .  Hence  

for some prime ideal  of  because   is weak multiplication. Also let 

 and  be families of maximal  ideals of  such that 

 and  If   or 

 then  or  b y [12, Lemma 2]. Hence we 

consider just the case that  and 

Then we have   and  If   or  is a finite set, 

then the claim follows from the above arguments. So we assume that  and  are 

infinite sets. Now we show that if   , then . Suppose 

. Therefore by [15, Lemma 2.12], 

. If  , then  the torsion submodule of  

, so  . Since  is a weak multiplication module,    is also 

a weak multiplication module. But every weak multiplication module over an 

integral domain is either torsion or torsion-free by [4, Proposition 2.4(iii)]. Hence 

 is a torsion-free -module. On the other hand we have . 

Thus  by [14, Lemma 1.1]. Therefore  . Now we 

consider our claim in the case that  . In this case  we set 

 . Since   and   , we have   so that  

 . Since  (   if , then we have  

. But  for every . Hence we have 

. Since  is a PID,  by some  and     has 

only a finite number  of prime factors. Hence  there exist only a finite number of 

prime ideal containing  . Thus  is a finite set. It follows that there exists  

  such that . It implies that   

The following example shows that the converse of Theorem 5 is not true in 

general. 

Example 4.  Let   .  Then    is a top-like -module which is not 

a weak multiplication module. 

For any element  of an -module , we denote  is an ideal of 

. Such that    is called a content -module if for every  
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 Every free module or, more generally every projective module is content 

module [17, P.  51]. Also every faithful multiplication module is a content 

module [7, Theorem 1.6]. 

Theorem 6. Let   be a content weak multiplication -module.  Then   is 

top-like. 

Proof. Let  be a semiprime submodule of  ,  and  let , where,   is  -

prime submodule of for each . Since  is weak multiplication,   for each 

. Since   is a content module, we have . Now, assume  that is 

a submodule of . If , then   If 

, then  is a semiprime submodule of . Hence 

 Thus   is top-like, by the proof  of 

Theorem 4. 
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Əsas spektri  Zariski tip topologiyaya malik  modullar 

 

H. Fazaeli Moghimi, F. Rashedi 

 

XÜLASƏ 

 

Bu işin məqsədi vahidə malik kommutativ R  halqası  üzərində yeni sinif “top-

like” adlanan modulların öyrənilməsidir. Hər bir “üst” modul Zariski-topologiyası olan 

əsas spektrə malikdir. Bu sinif R-modulların vurulmasından alınan ailəni özündə saxlayır. 

Biz götərəcəyik ki, M-in məhdud R-modulları yalnız o zaman “top-like” modullar 

olacaqlar ki, onlar R-modullarn vurulmasından ibarət olsunlar.  

Açar sözlər: əsas tip alt modul, əsas xassələr, “üst” modul, Zariski tipli 

topologiya, vurma modulu, WEPS modul. 
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Модули, основной спектр которых имеет топологию типа Зариски 

 

H. Фазели Мохими, Ф. Рашеди 

 

РЕЗЮМЕ 

 

Целью данной работы является ознакомление и изучение нового класса 

модулей над коммутативным  кольцом с единицей R, называемых «top-like»  

модули. Каждый «top-like»  модуль обладает основным спектром с топологией типа 

Зариски. Этот класс содержит семейство умножений R-модулей. Мы покажем, что 

порожденные конечные R-модули являются «top-like» R-модуль тогда и только 

тогда, когда М является умножением  R-модулей.  

Ключевые слова: подмодуль типа основного, основное свойство, top-like  

модуль, топология типа Зарискому, модуль умножения, WEPS модуль. 

 

 

 

 

 

 

 

 

 

 

 

 


