A MODULE WHOSE PRIMARY-LIKE SPECTRUM HAS THE ZARISKI-LIKE TOPOLOGY

H. Fazaeli Moghimi¹, F. Rashedi¹

¹Department of Mathematics, University of Birjand, Birjand, Iran e-mail: <u>hfazaeli@birjand.ac</u>

Abstract. Let *R* be a commutative ring with identity. The purpose of this paper is to introduce and study a new class of modules over *R* called top-like modules. Every top-like module possesses a primary-like spectrum with the Zariski-like topology. This class contains the family of multiplication *R*-modules properly. We show that a finitely generated *R*-module *M* is a top-like *R*-module iff *M* is a top *R*-module iff *M* is a multiplication *R*-module.

Keywords: Primary-like submodule, primeful property, top-like module, Zariski-like topology, multiplication module, WEPS module.

AMS Subject Classification: 13C05, 13C99.

1. Introduction

Throughout this paper all rings are commutative with identity and modules are unitary. Let M be an R-module and N - a submodule. The colon ideal of M into N is the ideal $(N:M) = \{r \in R: rM \subseteq N\}$ of R. A proper subbmodule P of M is called a prime submodule or p-prime submodule of M if for p = (P: M), whenever $rx \in P$ for $r \in R$ and $x \in M$, we have $r \in p$ or $x \in P$ [13]. The intersection of all prime submodules of M containing N, denoted by rad(N), is called prime radical (or simply, radical) of N [15]. The radical of an ideal I will be denoted by \sqrt{I} . The prime spectrum of, denoted by Spec(M)is the set of all prime submodules of M. If $Spec(M) = \emptyset$, then M is called primeless [14]. For $p \in Spec(R)$, we denote $Spec_n(M)$ as the set of all pprime submodules of M [13]. Put $V(N) = \{P \in Spec(M): P \supseteq N\}$ and $\zeta(M) = \{V(N): N \text{ is a submodule of } M\}$. Then there exists a topology τ , called quasi Zariski topology on Spec(M), having $\zeta(M)$ as the set of closed subsets of Spec(M) if and only if $\zeta(M)$ is closed under the finite union. In this case, M is called a top R-module [14]. We say that a submodule N of satisfies the primeful property if for every prime ideal p containing (N: M) there exists $P \in V(N)$ such that (P:M) = p. Also M is called primeful if M = 0 or the zero submodule of M satisfying the primeful property [9]. If N is a submodule, then $(rad(N): M) = \sqrt{(N:M)}$. A proper submodule Q of M is called a primary-like submodule whenever $rx \in Q$ for $r \in R$ and $x \in M$, we have $r \in (Q; M)$ or

 $x \in rad(Q)$ [8]. If Q is a primary-like submodule of M satisfying the primeful property, then (Q:M) is a primary ideal of R [8, Lemma 2.1]. In this case, Q is called a p-primary-like submodule of M, where $p = \sqrt{(Q:M)}$. The primary-like spectrum of M, denoted by $Spec_L(M)$, is the set of all primary-like submodules of M satisfying the primeful property [8]. Also we set $\mathcal{X}_p = \{Q \in Spec_L(M): \sqrt{(Q:M)} = p\}.$

Recently, modules whose spectrums having various types of Zariski topologies have been received a good deal of attention (see for example [1, 3, 11, 14, 16]). Hereafter, we study the algebraic properties of a new class of modules which are equipped with a new Zariski topology, called Zariski-like topology, defined as follows. Let N be a submodule of an R-module M. We set $v(N) = \{Q \in Spec_L(M): N \subseteq rad(N)\}$. Some elementary facts about v have been in the following lemma.

Lemma 1. Let *M* be an *R*-module. Let *N*, *N'* and $\{N_i : i \in I\}$ be submodules of *M*. Then the following statements hold.

- (1) $v(M) = \emptyset$.
- (2) $v(0) = Spec_L(M)$.
- (3) $\cap_{i \in I} v(N_i) = v(\sum_{i \in I} N_i).$
- (4) $v(N) \cup v(N') \subseteq v(N \cap N')$.
- (5) v(N) = v(rad(N)).

Put $\eta(M) = \{v(N): N \text{ is a submodule of } M\}$. From (1), (2), (3) and (4) in Lemma 1, we can easily that there exists a topology, \mathcal{T} say, on $Scpe_L(M)$. A module M is called a top-like module if $\eta(M)$ induces the topology \mathcal{T} . In Section 2, we study a class of R-modules whose primarylike spectrum is empty, called modules with empty primary-like spectrum or for short WEPS modules. We show that primeless R-modules are WEPS and the converse is true if R is a zero-dimensional ring (Lemma 2). In particular, every torsion divisible R-module is WEPS, however WEPS modules are neither torsion nor divisible in general (Example 1). In Section 3, for a moduleM over an Artinian ring R we show that:

M is locally cyclic \Rightarrow *M* is top-like \Rightarrow *M*_p is a top-like *R*_p-module.

Moreover, if M is finitely generated, then these conditions are equivalent (Theorem 1). An R-module M is called a multiplication module if for every submodule N of M, there exits an ideal I of R such that N = IM. In this case, we can take I = (N:M) [5]. An R-module M is called weak multiplication if each prime submodule P of M has the form IM for some deal I of R [4]. Since the zero submodule of \mathbb{Z} -module \mathbb{Q} of rational numbers is the only prime submodule of \mathbb{Q} , then \mathbb{Q} is a weak multiplication module, which is not multiplication. In Theorem 4 of Section 4, it is shown that every

multiplication module is top-like. In particular, if M is a finitely generated module, then M is top-like $\Leftrightarrow M$ is top $\Leftrightarrow M$ is multiplication.

Also it is proved that if M is a weak multiplication module over a PID such that for every $Q \in Spec_L(M)$, $\sqrt{(Q:M)} \neq 0$, then M is top-like (Theorem 5). By Example 5, we see that the converse dose not necessarily true.

2. Modules with empty primary-like spectrum

Hereafter we denote $Spec_L(M)$ by \mathcal{X} . Recall that an *R*-module *M* is said to be with empty primary-like spectrum or for short WEPS if $\mathcal{X} = \emptyset$. Note that we are not excluding the trivial case where \mathcal{X} is empty; WEPS modules are toplike modules. Clearly, zero module is WEPS and primeless. As nontrivial example the \mathbb{Z} -module $\mathbb{Z}(p^{\infty})$ is WEPS (see [14, P. 81] and Lemma 2.1). Also for the \mathbb{Z} -module \mathbb{Q} of rational numbers $Spec(\mathbb{Q}) = 0$, i.e. \mathbb{Q} is not primeless, however \mathbb{Q} is WEPS since the submodule 0 of \mathbb{Q} dose not satisfy the primeful property.

Lemma 2. Let *M* be an *R*-module. Consider the following statements.

- (1) pM = M for every $p \in V(Ann(M))$;
- (2) M is primeless;
- (3) M is WEPS;

(4) mM = M for every maximal ideal m of R.

Then $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$. Moreover, if *R* is a zero-dimensional ring, then $(4) \Rightarrow (1)$.

Proof. (1) \Rightarrow (2) Suppose on the contrary that *P* is a prime submodule of. Thus (P:M)M = M by (1) and so P = M, a contradiction. (2) \Rightarrow (3) Suppose $Q \in \mathcal{X}$. Since *Q* satisfies the primful property, there exists a prime submodule *Q* of *M* containing *Q* which is a contradiction.

(3) \Rightarrow (4) Assume the contrary, $mM \neq M$ for some maximal ideal m of R. Thus $(mM:M) \neq R$. Hence (mM:M) = m and so by [14, Corollary 1.2], mM is a prime submodule of . It is easily seen that $\in \mathcal{X}$, i.e. M is not WEPS. (4) \Rightarrow (1) is clear.

Lemma 3. If M is a WEPS R-module, then M is not finitely generated and multiplication.

Proof. If *M* is either finitely generated or multiplication, *M* has a maximal submodule *m*. It is evident that *m* satisfies the primeful property and $m \in \mathcal{X}$. Thus *M* is not WEPS.

In [14, Lemma 1.3 (1)], it has been shown that any torsion divisible module over a domain R is primeless and so by Lemma 2.1 is WEPS. In general, a WEPS module is not torsion. It is clear that the \mathbb{Z} -module \mathbb{Q} is WEPS which is also torsion-free. In the following a WEPS module is given which is not divisible.

Example 1. Let R = K[x, y], the domain of polynomials over a field K. Let m = Rx + Ry. Then the R/m-module R/m is an injective hull of R/m since R/m is a field ([18, p. 50 Example]). Thus $R/m \cong E(R/m)$, a divisible R/m-module ([18, Remark before Proposition 2.22 and Proposition 2.6]). On the other hand since E(R/m) is an essential extension of R/m, it is easily seen that E(R/m) is a torsion R-module. Thus by [14, Lemma 1.3 (1)] $R/m \cong E(R/m)$ is a primeless R-module and so by Lemma 1 it is a WEPS R-module. However, R/m is not a divisible R-module because for $x \in m = Rx + Ry$ and $1 + m \in R/m$ there is no $f + m \in R/m$ such that x(f + m) = 1 + m. Equivalently, there is no $g \in m$ such that xf + g = 1.

In the following we give conditions under which a WEPS module is divisible.

Proposition 1. Let R be a one-dimensional Noetherian domain and M be a module over R. If M is a WEPS module, then M is divisible.

Proof. Suppose that *M* is a WEPS *R*-module. By Lemma 2, M = mM for every maximal ideal *m* of *R*. Assume $0 \neq r \in R$. Since *R* is one-dimensional domain, the ring *R/Rr* is zero- dimensional Noetherian and so is Artinian. So $m_1, \ldots, m_n \subseteq Rr$ for some positive integer *n* and maximal ideals m_i $(1 \le i \le n)$ of *R*. Hence $M = m_1M = m_1m_2M = m_1 \ldots m_nM \subseteq rM \subseteq M$ and so M = rM = rM. Thus *M* is divisible.

Let *N* be a submodule of *M*. In [8, Corollary 3.5] we showed that every primary-like submodule of *M*/*N* satisfying the primeful property has the form Q/N, where $Q \in \mathcal{X}$ and $N \subseteq Q$. Thus any homomorphic image of a WEPS module is WEPS. In particular, if $M = \bigoplus_{i \in I} M_i$ is a WEPS module, then for every $i \in I$, M_i is WEPS. The converse holds, if R is a zero-dimensinal ring (see [14, Proposition 1.7] and Lemma 2.1). Also if for every $i \in I$, M_i is a primeless module, then $M = \bigoplus_{i \in I} M_i$ is a WEPS module (see [14, Proposition 1.7] and Lemma 2.1). In the following we investigate the similar assertion for direct product of modules.

Lemma 4. Let *M* be an *R*-module. If *Q* is a primary-like submodule of *M* and *N* a submodule of *M* such that $rad(Q) \cap rad(N) = rad(Q \cap N)$, then $N \subseteq Q$ or $Q \cap N$ is a primary-like submodule of *N*.

Proof. Let $N \not\subseteq Q$ and for $n \in N$, $rn \in Q \cap N$ such that $r \notin (Q \cap N:N)$. It implies that $rn \in Q$ and $r \notin (Q:M)$. Since Q is a primary-like submodule of M, we have $n \in rad(Q) \cap N$, and so by our assumption $n \in rad(Q \cap N)$. Thus $Q \cap N$ is a primary-like submodule of N.

Proposition 2. Let M_i ($i \in I$) be *R*-modules and $M = \prod_{i \in I} M_i$. Let $rad(Q) \cap rad(N) = rad(Q \cap N)$ for every primary-like submodule *Q* of M_i and every submodule *N* of M_i . Then *M* is a WEPS module if and only if M_i is WEPS for every $i \in I$.

Proof. Suppose M_i is WEPS and M is not WEPS. Assume $Q \in \mathcal{X}$. Then $Q \cap M_i = M_i$ for each $i \in I$, by Lemma 4. Hence $M_i \subseteq Q$ for each $i \in I$. Thus $M \subseteq Q$, a contradiction. The converse follows from the fact that every homomorphic image of a WEPS module is WEPS.

Proposition 3. Let *M* be an *R*-module such that for every primary-like submodule *Q* of *M* and every submodule *N* of *M* we have $rad(Q) \cap rad(N) = rad(Q \cap N)$. Then if $0 \to M' \to M \to M'' \to 0$ is an exact sequence of *R*-

modules such that M'' and M'''' are both WEPS, then M is WEPS.

Proof. Suppose that $Q \in \mathcal{X}$. Then $Q \cap f(M') = f(M')$, by Lemma 4 and so $f(M') \subseteq Q$. Hence Q/f(M') is a primary-like submodule of M/f(M') satisfying the primeful property by [8, Corollary 3.5], which is a contradiction since $M/f(M') \cong M''$ and M'' is WEPS. Thus M is WEPS.

For the converse of Proposition 2.3, the homomorphic image of a WEPS module is WEPS. But the submodules of a WEPS module is not necessarily WEPS, even if $rad(Q) \cap rad(N) = rad(Q \cap N)$ for every primary-like submodule Q of M and every submodule N of M. The Z-module Q is WWPS, while the Z-module Z is not WEPS. In fact $Spec_L(\mathbb{Z}) = \{0\} \cup \{p^n \mathbb{Z}: n \in \mathbb{N}\}$. Also since $Spec(\mathbb{Q}) = 0$, then for every primary-like submodule Q of Q and every submodule N of Q either $rad(Q) \cap rad(N) = rad(Q \cap N) = 0$ or $rad(Q) \cap rad(N) = rad(Q \cap N) = 0$.

3. Top-like modules

A submodule N of an R-module M is called semiprime. If N is an intersection of prime submodules. We say that a submodule $Q \in \mathcal{X}$ is phenomenal if whenever N and L are semiprime submodules of M with $N \cap L \subseteq rad(Q)$, then $N \subseteq rad(Q)$ or $N \subseteq rad(Q)$.

Theorem 1. Let *M* be an *R*-module. Consider the following statements. (1) Every $Q \in \mathcal{X}$ is phenomenal;

(2) $v(N) \cup v(L) = v(N \cap L)$ for any submodules N and L of M;

(3) *M* is a top-like module.

Then(1) \Rightarrow (2) \Rightarrow (3) Furthermore, if every prime submodule of *M* satisfies the primeful property, then (3) \Rightarrow (1).

Proof. (1) \Rightarrow (2) Let *N* and *L* be semiprime submodules of *M*. Clearly $v(N) \cup v(L) \subseteq v(N \cap L)$. Let $Q \in v(N \cap L)$. Then $N \cap L \subseteq rad(Q)$ and hence $N \subseteq rad(Q)$ or $L \subseteq rad(Q)$. Thus $v(N \cap L) \subseteq v(N) \cup v(L)$.

 $(2) \Rightarrow (3)$ Assume N and L be submodules of . If v(N) is empty, then $v(N) \cup v(L) = v(N \cap L)$. Suppose that v(N) and v(L) are both non-empty. Then $v(N) \cup v(L) = v((radN)) \cup v(rad(L)) = v(rad(N) \cap rad(L))$, by Lemma 1.

(3) \Rightarrow (1) Let $Q \in X$ and let N and L be semiprime submodules of M such that $N \cap L \subseteq rad(Q)$. By hypothesis, there exists a submodule K of M such that $v(N) \cup v(L) = v(K)$. Since $N = \bigcap_{i \in I} P_i$, for some collection of prime submodules P_i ($i \in I$), for each $i \in I$, $P_i \in v(N) \subseteq v(K)$ and so $K \subseteq P_i$. Thus $K \subseteq \bigcap_{i \in I} P_i = N$. Similarly $K \subseteq L$. Thus $K \subseteq N \cap L$. Hence we have $v(N) \cup v(L) \subseteq v(N \cap L) \subseteq v(K) \subseteq v(N) \cup v(L)$. It follows that $v(N) \cup v(L) = v(N \cap L)$. Now from $Q \in v(N \cap L)$. we have $Q \in v(N)$ or $Q \in v(N)$, i.e. $N \subseteq rad(Q)$ or $L \subseteq rad(Q)$.

Corollary 1. Let M be an R-module. Then the conditions (1), (2) and (3) in Theorem 3.1 are equivalent in each of the following cases.

(1) M is a finitely generated module.

(2) *M* is a primeful module and every prime submodule of *M* has the form *pM* for some prime ideal $p \in V(Ann(M))$.

Proof. (1) follows from [9, Theorem 2.2] and Theorem 1.

(2) follows from [9, Proposition 4.5] and Theorem 3.1.

Corollary 2. Any homomorphic image of a top-like *R*-module is top-like. In particular every cyclic module is top-like.

Proof. Let *N* be a submodule of a top-like *R*-module *M*. Then the primary-like submodules of M/N which satisfy the primeful property are precisely the submodules Q/N, where *Q* is a primary-like submodule of *M* satisfying the primeful property with $N \subseteq Q$ [8, Corollary 3.5]. Similarly every prime (semiprime) submodule of M/N has the form K/N, where *K* is a prime (semiprime) submodule of *M* containing *N* [14, Lemma 1.1]. Hence we have rad(Q/N) = rad(Q)/N. Thus by Theorem 1 M/N is a top-like *R*-module. In particular if M' is a homomorphic image of a top-like module *M* under a surjective homomorphism φ , then $M \cong M/Ker\varphi$ and so by the above argument M' is top-like.

Corollary 3. Let $S \subseteq R$ be rings and M be an R-module such that the S-module M is a top-like module. Then the R-module M is a top-like module.

Proof. Let Q be a primary-like R-submodule of M satisfying the primeful property. It is clear that Q is a primary-like S-submodule of M satisfying the

primeful property. Let N and L be semiprime R-submodule of M such that $N \cap L \subseteq rad(Q)$. Hence $N \subseteq rad(Q)$ or $L \subseteq rad(Q)$, since N and L are also semiprime S-submodule of M. Thus Q is phenomenal and so by Theorem 1, M is a top-like R-module.

Lemma 5. Let *R* be a field. Then there exists a phenomenal submodule $Q \in \mathcal{X}$ if and only if *M* is a one-dimensional vector space over *R*.

Proof. Suppose *M* is one-dimensional. Since every proper submodule of *M* is a prime submodule, P = 0 is the only prime submodule of *M*. So it is easily seen that $P \in \mathcal{X}$ and *P* is a phenomenal submodule. Conversely, suppose on the contrary that *M* is not one-dimensional and $Q \in \mathcal{X}$ is phenomenal. Since *Q* is a proper submodule and so is a prime submodule, rad(Q) = Q and $dim_R M \neq 0$. So $dim_R M \geq 2$. Assume $dim_R M = 2$. Thus there exist non-zero elements $m_1, m_2 \in M$ such that $Rm_1 \cap Rm_2 = 0$. Since *Q* is phenomenal, $Q \neq 0$. Assume that $m \in M \setminus Q$ and $0 \neq q \in Q$. So Rm and R(m+q) are subspaces of *M* with $Rm \cap R(m+q) = 0 \subseteq Q$ but $Rm \not\subseteq Q$ and $R(m+q) \not\subseteq Q$, a contradiction.

Theorem 2. Let m be a maximal ideal of R and M a top-like R-module. Then M/mM is a cyclic R-module.

Proof. Suppose that $M \neq mM$. In this case M/mM is a non-zero vector space over the field R/m and every proper subspace is primary-like and satisfies the primeful property. Since M is a top-like module, M/mM is a top-like R/m-module by Corollary 2. Hence M/mM contains a phenomenal submodule by Theorem 2. Now Lemma 5 shows that M/mM is one-dimensional over R/m, i.e. M/mM is a cyclic R-module.

In Corollary 2, we showed that top-like modules are closed under quotient. Now we use from Theorem 2 to show that a submodule of a toplike module is not necessarily top-like.

Example 2. Let $M = \mathbb{Q} \oplus \mathbb{Z}_p$, where \mathbb{Z}_p be the cyclic group of order M. Then $Spec(M) = \{\mathbb{Q} \oplus 0, 0 \oplus \mathbb{Z}_p\}$ by [14, Example 2.6].Clearly if N is a submodule of M such that $N \not\subseteq \mathbb{Q} \oplus 0$ or $N \not\subseteq 0 \oplus \mathbb{Z}_p$, then N dose not satisfy the primeful property. Also if $N \subseteq 0 \oplus \mathbb{Z}_p$, then (N:M) = 0 and so N dose not satisfy the primeful property. Consider the only remaining case $N \subseteq \mathbb{Q} \oplus 0$. In this case, if $(N:M) = p\mathbb{Z}$, then $N = \mathbb{Q} \oplus 0$ and so $\mathbb{Q} \oplus 0 \in \mathcal{X}$. If (N:M) = 0, then N does not satisfy the primeful property. The finial case is $0 \subset (N:M) \subset p\mathbb{Z}$. In this case if N is a primary-like submodule satisfying the primeful property, then $(N:M) = p^i\mathbb{Z}$ for some $i \ge 1$, since (N:M) is a primary ideal of R. Assume i = 1 and $(0,b) \in M \setminus \mathbb{Q} \oplus 0$. Now we have p(0,b) = (0,0), follows $p \in p^i\mathbb{Z}$ which is a contradiction. Therefore $\mathcal{X} = \{\mathbb{Q} \oplus 0\}$. Hence M is a top-like \mathbb{Z} -module by Theorem 3.1. Put = $\mathbb{Z} \oplus \mathbb{Z}_p$ Hence by Theorem 2 N is not top-like, since $N/pN \cong \mathbb{Z}_p \oplus \mathbb{Z}_p$, a non-cyclic \mathbb{Z} -module. **Corollary 4.** Let F be a free R-module. Then the following statements are equivalent.

- (1) F is top-like;
- (2) F is top;
- (3) F is cyclic.

Proof. (1) \Rightarrow (3) Suppose that F is top-like. Hence F/mF is a cyclic R/m-module by Theorem 3.2. Thus F is cyclic.

(3) \Rightarrow (1) follows from Corollary 2.

(2) \Leftrightarrow (3) holds by [14, Corollary 2.5].

Corollary 5. Let R be a semi-local ring and M be an R-module. Then the following statements are equivalent.

- (1) M is top-like;
- (2) M is top;
- (3) M is cyclic.

Proof. (1) \Rightarrow (3) Assume that *M* is a top-like module. Since *R* is semilocal, *R* is containing precisely finite distinct maximal ideals. Suppose $m_1, ..., m_n$ denote the distinct maximal ideals of *R*, where *n* is a positive integer. By Theorem 3.2 $M/m_i M$ is cyclic for each $1 \le i \le n$. Thus *M* is cyclic.

 $(3) \Rightarrow (1)$ follows from Corollary 2.

(2) \Leftrightarrow (3) holds by [14, Corollary 2.5].

Let N be a submodule of an R-module M and $p \in S \in pecc(R)$. The saturation $S_p(N)$ of N with respect to p is the contraction of N_p in M [10]. In [14, P. 92] it has been shown that for every submodule N of M and for any R_p -submodule L of M_p , $(R_pN) \cap M = S_p(N)$ and $L = R_p(L \cap M)$.

Lemma 6. Let m be a maximal ideal of a ring R. If Q is an m-primary-like submodule of M satisfying the primeful property, then rad(Q) is an m-prime submodule of M.

Proof. Since Q satisfies the primeful property, we have $(rad(Q): M) = \sqrt{(Q:M)} = m$. Suppose $rx \in rad(Q)$ with $r \in R \setminus m$ and $x \in M$. Then x = tx + srx, for some $s \in R$ and $t \in m$ and therefore $x \in rad(Q)$.

Proposition 4. Let R be an Artinian ring and M be a top-like R-module. Then M_p is a top-like R_p -module for every prime ideal p of R.

Proof. Let Q be a primary-like submodule of the R_p -module M_p satisfying the primeful property. Then it is easily verified that $Q \cap M$ is a primary-like submodule of M satisfying the primeful property. Now if N and L are semiprime submodules of M_p with $N \cap L \subseteq rad(Q)$, then $N \cap M$ and $L \cap M$

are semiprime submodules of M with $(N \cap M) \cap (L \cap M) \subseteq rad(Q) \cap M$. Since R is an Artinian ring, rad(Q) is a prime submodule of M_p by Lemma 3.2. So $rad(Q) \cap M$ is a prime submodule of M. Since M is a top-like module, by [6, Theorem 2.16] M is a top module. Hence by [14, Lemma 2.1], $N \cap M \subseteq rad(Q) \cap M$ or $L \cap M \subseteq rad(Q) \cap M$. It follows that $N = R_p(N \cap M) \subseteq R_p(rad(Q) \cap M) = rad(Q)$ or $L \subseteq rad(Q)$. Thus Q is phenomenal and so M_p is a top-like R_p -module by Theorem 1.

Proposition 5. Let M_p be a top-like R_p -module and every prime submodule of $M_p/R_p(pM)$ satisfies the primeful property for every prime ideal p of R. Then $S_p(rad(Q)) = S_p(pM)$ or $S_p(rad(Q)) = M$ for every $Q \in X_p$.

Proof. Suppose that $Q \in \mathcal{X}_p$. So $pM \subseteq rad(Q)$. It follows that $R_p(pM) \subseteq R_p rad(Q) \subseteq M_p$. By Theorem 3.2, $M_p/R_p(pM)$ is cyclic so that $R_p rad(Q) = R_p(pM)$ or $R_p rad(Q) = M_p$. Now, let $R_p rad(Q) = R_p(pM)$. Then $S_p(rad(Q)) = R_p rad(Q) \cap M = R_p(pM) \cap M = S_p(pM)$. If $R_p rad(Q) = M_p$, then $S_p(rad(Q)) = R_p rad(Q) \cap M = R_pM_p \cap M = M$.

An *R*-module *M* is called locally cyclic if M_p is a cyclic module over the local ring R_p for every prime ideal *p* of *R*.

Theorem 3. Let R be an Artinian ring and M be an R-module. Consider the following statements.

- (1) M is cyclic.
- (2) M is locally cyclic.
- (3) M is top-like.
- (4) M_p is a top-like R_p -module for every prime ideal p of R.
- (5) $rad(Q) = S_p(pM)$ for every $Q \in \mathcal{X}_p$.
- (6) M/rad(pM) is a cyclic module for every prime ideal p of R.
- (7) M/pM is a cyclic module for every prime ideal p of R.

Then $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7)$. Furthermore, if *M* is finitely generated, then $(7) \Rightarrow (1)$.

Proof. (1) \Rightarrow (2) is clear.

 $(2) \Rightarrow (3)$ Suppose $Q \in \mathcal{X}$ and $p = \sqrt{(Q:M)} = (rad(Q):M)$. Let N and L be semiprime submodules of M with $N \cap L \subseteq rad(Q)$. Then $R_pN \cap R_pL \subseteq R_prad(Q)$. Note that if $R_prad(Q) = M_p$, by Lemma 3.2 rad(Q) = M, a contradiction. Thus $R_prad(Q) \neq M_p$. But $pM \subseteq rad(Q)$ gives $R_p(pM) \subseteq R_prad(Q)$. S ince M_p is cyclic, $R_prad(Q) = pR_pM_p$. Hence $R_prad(Q)$ is a unique maximal submodule of the R_p - module M_p . Thus $R_pN \subseteq R_prad(Q)$. or $R_pL \subseteq R_prad(Q)$. Suppose that $R_pN \subseteq R_prad(Q)$. Then $N \subseteq R_pN \cap M \subseteq$ $R_p rad(Q) \cap M = S_p(rad(Q)) = rad(Q)$. It follows that Q is phenomenal and so M top-like module by Theorem 1.

 $(3) \Rightarrow (4)$ follows from Proposition 5.

 $(4) \Rightarrow (5)$ Suppose that $Q \in \mathcal{X}_p$. So $pM \subseteq rad(Q)$. It follows that $R_p(pM) \subseteq R_prad(Q) \subseteq M_p$. By [6, Theorem 2.16] and Theorem 2, $M_p/R_p(pM)$ is cyclic so that $R_prad(Q) = R_p(pM)$ or $R_prad(Q) = M_p$. Now, if $R_prad(Q) = M_p$, then by Lemma 6 rad(Q) = M which is a contradiction. Thus we have $rad(Q) = S_p(rad(Q)) = R_prad(Q) \cap M = R_p(pM) \cap M = S_p(pM)$.

 $(5) \Rightarrow (6)$ Suppose M = rad(pM). So $p \subseteq (pM:M) \subseteq (rad(pM):M) = R$ so that p = (pM:M). It follows that pM is a prime submodule of M satisfying the primeful property. Assume that $x \in M \setminus rad(pM)$. It implies that $p \subseteq (Rx + rad(pM):M) \subseteq R$ and so(Rx + rad(pM):M) = R. Thus M = Rx + rad(pM), i. e. M/rad(pM) is cyclic.

(6) \Rightarrow (7) Assume that M = pM. Hence similar to the proof (5) \Rightarrow (6) pM is a *p*-prime submodule of *M* and so rad(pM) = pM. Thus M/pM is cyclic.

 $(7) \Rightarrow (1)$ follows from [14, Theorem 3.5] and [7, Corollary 2.9].

4. Multiplication modules and weak multiplication modules

In this section we investigate the relationship between some certain classes of modules, spe cially multiplication modules, and top-like modules.

Hereafter we denote Spec(M) and $Spec_p(M)$ for every $p \in Spec(R)$ by X and X_p , respectively. The map $\psi: X \longrightarrow Spec(R/Ann(M))$ given by $P \mapsto (P:M)/Ann(M)$ is called the natural map of X. M is said to be X-injective if either $X = \emptyset$ or $X \neq \emptyset$ and the natural map of X is injective.

Theorem 4. Let M be a finitely generated R-module. Then the following statements are equivalent.

- (1) M is multiplication;
- (2) M is top-like;
- (3) *M* is top;
- (4) $|X_p| \leq 1$ for every $p \in Spec(R)$;
- (5) If V(P) = V(P') for Spec(M), then P = P';
- (6) M is X-injective;

(7) For every submodule N of M there exists an ideal I of R such that V(N) = V(IM);

(8) M_p is a top R_p -module for every prime ideal p of R;

(9) M/mM is cyclic for every maximal ideal m of R.

Proof. (1) \Rightarrow (2) Suppose N and L are two submodule of . Therefore N = IM and L = JM some ideals I and J of R. It is easy to verify that $v(IM) \cup v(JM) \subseteq v(IM \cap JM) \subseteq v(IJM)$. Let

 $Q \in v(IJM)$. Then $IJM \subseteq rad(Q)$. So $IJ \subseteq (IJM:M) \subseteq (rad(Q):M)$. Hence $I \subseteq (rad(Q):M)$ or

 $J \subseteq (rad(Q): M)$ and so $Q \in v(IM) \cup v(JM)$.

(2) \Rightarrow (3) follows from the fact that (X, τ) is a topological subspace of (X, T).

 $(1) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (7) \Leftrightarrow (8) \Leftrightarrow (9)$ is by [14, Theorem 3.5].

 $(4) \Leftrightarrow (5) \Leftrightarrow (6)$ follows from [11, Proposition 3.2].

Corollary 6. If M is a finitely generated top-like module over an Artinian ring R, then M is cyclic.

The following example shows that every top-like module is not multiplication in general.

Example 3. Let $M = \mathbb{Z}(p^{\infty}) \oplus \mathbb{Z}_p$, where \mathbb{Z}_p is the cyclic group of order p. Then (M) = pM. So M is a top-like \mathbb{Z} -module by Theorem 1. But M is not a multiplication \mathbb{Z} -module by [14, Example 3.7].

An *R*-module *M* is called distributive if the lattice of its submodules is distributive, i.e. $N \cap (L + K) = (N \cap L) + (N \cap K)$ or equivalently $N + (L \cap K) = (N + L) \cap (N + K)$ for all submodules N, L and K of M [5]. Some authors call such modules arithmetical modules. An *R*-module *M* is called a Bezout module if every finitely generated submodule is cyclic [19]. It is easy to see that every Bezout *R*-module is distributive [19, P. 307, Corollary 2].

Proposition 6. Let R be an Artinian ring and M be an R-module. Consider the following statements.

(1) M is distributive.

(2) M is Bezout.

(3) M is top-like.

Then (1) \Leftrightarrow (2) and (2) \Rightarrow (3). Furthermore, if *R* is a local ring and *M* is finitely generated, then (3) \Rightarrow (2).

Proof. (1) \Leftrightarrow (2) follows from [5, Propositions 4, 7].

 $(2) \Rightarrow (3)$ Assume $Q \in v(N \cap L)$. Let $N \not\subseteq rad(Q), n \in N \setminus rad(Q)$ and $l \in L$. Then there exists $m \in M$ such that Rn + Rl = Rm. Thus there exist $r, s \in R$ such that n = rm and l = sm. Therefore $sn \in rad(Q)$. Now by Lemma $3.2 \ s \in (rad(Q): M)$. In particular, $sm \in rad(Q)$, whence $l \in rad(Q)$. This implies that M is a top-like module.

 $(3) \Rightarrow (2)$ Since *M* is finitely generated, by Theorem 4.1 *M* is a multiplication module. Hence *M* is cyclic by [7, Corollary 2.9]. Since *R* is an

Artinian local ring, every ideal of R is principal and so every submodule of M is cyclic.

Recall that an *R*-module *M* is called weak multiplication if each prime submodule *P* of *M* has the form *IM* for some ideal *I* of *R* [4]. In this case, we can take I = (P:M).

Theorem 5 Let *R* be a PID and *M* a weak multiplication *R*-module. If for every $Q \in \mathcal{X}_{1,\sqrt{Q:M}} \neq 0$, then *M* is a top-like *R*-module.

Proof. Suppose N and L be non-zero semiprime submodules of such that $N \cap L \subseteq rad(Q)$. We show that Q is phenomenal. So by Theorem 1 M is top-like. Since R is PID, rad(Q) is prime by Lemma 6. Hence rad(Q) = pMfor some prime ideal p of R because M is weak multiplication. Also let $\{p_i, i \in I\}$ and $\{q_i, j \in J\}$ be families of maximal ideals of R such that $N = \bigcap_{i \in I} p_i M$ and $L = \bigcap_{i \in I} q_i M$. If $(N:M) \not\subseteq (rad(Q):M)$ or $(L:M) \not\subseteq$ (rad(Q): M), then $N \subseteq rad(Q)$ or $L \subseteq rad(Q)$ by [12, Lemma 2]. Hence we consider just the case that $(N:M) \subseteq (rad(Q):M)$ and $(L:M) \subseteq$ (rad(Q): M). Then we have $\bigcap_{i \in I} p_i \subseteq p$ and $\bigcap_{i \in I} q_i \subseteq p$. If I or J is a finite set, then the claim follows from the above arguments. So we assume that I_{and} I_{are} infinite sets. Now we show that if $N \not\subseteq rad(Q)$, then $L \subseteq rad(Q)$. Suppose $n \in N \setminus rad(0)$. Therefore by [15, Lemma 2.12], $(L;n) \subseteq (rad(0);M) =$ (pM:M) = p. If (L:n) = (0), then $n + L \notin T(M/L)$ the torsion submodule of M/L, so T(M/L) = M/L. Since M is a weak multiplication module, M/L is also a weak multiplication module. But every weak multiplication module over an integral domain is either torsion or torsion-free by [4, Proposition 2.4(iii)]. Hence M/L is a torsion-free R-module. On the other hand we have $(L: M) \subseteq (L: n) = (0)$. Thus $L \in \text{Spec}_0(M)$ by [14, Lemma 1.1]. Therefore L = (0)M = M. Now we consider our claim in the case that (L:n) = (0). In this case we set $\Omega =$ $\{q_i: n \notin q_iM\}$. Since $N \cap L \subseteq pM$ and $n \in N \setminus pM$, we have $n \notin L$ so that $\Omega \neq \emptyset$. Since $(q_i M: n) = R$ if $n \in q_i M$, then we have $(L: n) = (\bigcap_{i \in I} q_i M: n) =$ $\cap_{q_{i\in O}} (q_{j}M:n)$. But for every $q_{j} \in \Omega, (q_{j}M:n) = q_{j}$. Hence we have $(0) \neq 0$ $(L:n) = \bigcap_{q_i \in O} q_i \subseteq p$. Since R is a PID, (L:n) = (r) by some $r \in R$ and r has only a finite number of prime factors. Hence there exist only a finite number of prime ideal containing (L:n). Thus Ω is a finite set. It follows that there exists $q_i \in \Omega$ such that $q_i \subseteq p$. It implies that $L \subseteq pM = rad(Q)$.

The following example shows that the converse of Theorem 5 is not true in general.

Example 4. Let $M = \mathbb{Q} \oplus \mathbb{Z}_p$. Then *M* is a top-like \mathbb{Z} -module which is not a weak multiplication module.

For any element x of an R-module M, we denote $c(x) = \cap \{I: I \text{ is an ideal of } R$. Such that $x \in IM\}$. M is called a content R-module if for every $x \in M, x \in I$

c(x)M. Every free module or, more generally every projective module is content module [17, P. 51]. Also every faithful multiplication module is a content module [7, Theorem 1.6].

Theorem 6. Let M be a content weak multiplication R-module. Then M is top-like.

Proof. Let *N* be a semiprime submodule of , and let $N = \bigcap_{i \in I} P_i$, where, P_i is p_i -prime submodule of *M* for each $i \in I$. Since *M* is weak multiplication, for each $i \in I$. Since *M* is a content module, we have N = (N:M)M. Now, assume *L* that is a submodule of *M*. If rad(L) = M, then v(L) = v(rad(L)) = v(RM). If $rad(L) \neq M$, then rad(L) is a semiprime submodule of *M*. Hence v(L) = v(rad(L)) = v(rad(L):M)M. Thus *M* is top-like, by the proof $(1) \Longrightarrow (2)$ of Theorem 4.

References

- 1. Abbasi A., Hassanzadeh-Lelekaami D., Modules and spectral spaces, Comm. Algebra, 40, 2012, pp.4111-4129.
- 2. Anderson D.D., Multiplication ideals, multiplication rings and the ring R(X), Canad. J. Math., 28, 1976, pp.760-768.
- 3. Ansari-Toroghy H., Ovlyaee-Sarmazdeh R., On the prime spectrum of a module and Zariski topologies, Comm. Algebra, 38, 2010, pp.4461-4475.
- 4. Azizi A., Weak multiplication modules, Czechoslovak ath. J.,53, 128, 2003, pp.529-534.
- 5. Barnard A., Multiplication modules, J. Algebra, 71, 1981, pp.174-178.
- 6. Behboodi M., Sabzevari M., Modules satisfying the prime radical condition and a sheaf con-struction for modules I (submitted).
- 7. El-Bast Z.A., Smith P. F., Multiplication modules, Comm. Algebra, 16, 4, 1988, pp.755-779.
- 8. Fazaeli Moghimi H., Rashedi F., Primary-like submodules satisfying the primeful property, (to appear).
- 9. Lu C.P., A module whose prime spectrum has the surjective natural map, Houston J. Math., 33, 1, 2007, pp.125-143.
- 10. Lu C.P., Saturations of submodules, Comm. Algebra, 31, 6, 2003, pp.2655-2673.
- 11. Lu C.P., The Zariski topology on the prime spectrum of a module, Houston J. Math., 25, 3, 1999, pp.417-425.

- 12. Lu C.P., M-radicals of submodules in modules, Math. Japonica, 34, 2, 1989, pp.211-219.
- 13. Lu C.P., Prime submodules of modules, Comment. Math. Univ. St. Pauli, 33, 1, 1984, pp.61-69.
- McCasland R. L., Moore M.E., Smith P. F., On the spectrum of a module over a commutative ring, Comm. Algebra, 25, 1, 1997, pp.79-103.
- 15. Moore M. E., Smith S. J., Prime and radical submodules of modules over commutative rings, Comm. Alegbra, 30, 2002, pp. 5073-5064.
- 16. Nikseresht A., Azizi A., Zariski spaces of modules, J. Pure Appl. Algebra, 217, 7, 2013, pp.1187-1194.
- 17. Ohm J., Rush D. E., Content modules and algebras, Math. Scand., 31, 1972, pp.49-68.
- 18. Sharpe D. W., Vamos P., Injective modules, Cambridge University Press, London.
- 19. Stephenson W., Modules whose lattice of submodules is distributive, J. Lond. Math. Soc., 28, 2, 1974, pp.291-310.

Əsas spektri Zariski tip topologiyaya malik modullar

H. Fazaeli Moghimi, F. Rashedi

XÜLASƏ

Bu işin məqsədi vahidə malik kommutativ R halqası üzərində yeni sinif "toplike" adlanan modulların öyrənilməsidir. Hər bir "üst" modul Zariski-topologiyası olan əsas spektrə malikdir. Bu sinif R-modulların vurulmasından alınan ailəni özündə saxlayır. Biz götərəcəyik ki, M-in məhdud R-modulları yalnız o zaman "top-like" modullar olacaqlar ki, onlar R-modulların vurulmasından ibarət olsunlar.

Açar sözlər: əsas tip alt modul, əsas xassələr, "üst" modul, Zariski tipli topologiya, vurma modulu, WEPS modul.

Модули, основной спектр которых имеет топологию типа Зариски

Н. Фазели Мохими, Ф. Рашеди

РЕЗЮМЕ

Целью данной работы является ознакомление и изучение нового класса модулей над коммутативным кольцом с единицей R, называемых «top-like» модули. Каждый «top-like» модуль обладает основным спектром с топологией типа Зариски. Этот класс содержит семейство умножений R-модулей. Мы покажем, что порожденные конечные R-модули являются «top-like» R-модуль тогда и только тогда, когда M является умножением R-модулей.

Ключевые слова: подмодуль типа основного, основное свойство, top-like модуль, топология типа Зарискому, модуль умножения, WEPS модуль.